Protein Information

Name GABA receptor (protein family or complex)
Synonyms GABA receptor; GABA receptors; GABA(A) receptor; GABA(A) receptors; Gamma aminobutyric acid receptor; Gamma aminobutyric acid receptors

Compound Information

Name piperazine
CAS piperazine

Reference List

PubMed Abstract RScore(About this table)
13678839 Harder A, Schmitt-Wrede HP, Krucken J, Marinovski P, Wunderlich F, Willson J, Amliwala K, Holden-Dye L, Walker R: Cyclooctadepsipeptides--an anthelmintically active class of compounds exhibiting a novel mode of action. Int J Antimicrob Agents. 2003 Sep;22(3):318-31.

In nematodes, there are five targets for the existing anthelmintics: the nicotinergic acetylcholine receptor which is the target of tetrahydropyrimidines/imidazothiazoles and indirectly that of the acetylcholineesterase inhibitors; the GABA receptor which is the target of piperazine, the glutamate-gated chloride channel as the target of the macrocyclic lactones, and beta-tubulin as the target of prebenzimidazoles/benzimidazoles.
31(0,1,1,1) Details
17999098 Robertson AP, Martin RJ: Ion-channels on parasite muscle: pharmacology and physiology. Invert Neurosci. 2007 Dec;7(4):209-17. Epub 2007 Nov 13.

The purpose of this review is to describe the site of action of some frequently used anthelmintic compounds: nAChRs and levamisole/pyrantel; Glu-Cls and avermectins/mylbemycins; GABA receptors and piperazine.
6(0,0,1,1) Details
17657585 Yi PL, Lin CP, Tsai CH, Lin JG, Chang FC: The involvement of serotonin receptors in suanzaorentang-induced sleep alteration. J Biomed Sci. 2007 Nov;14(6):829-40. Epub 2007 Jul 27.


One ingredient of suanzaorentang, zizyphi spinosi semen, exhibits binding affinity for serotonin (5-hydroxytryptamine, 5-HT) receptors, 5-HT (1A) and 5-HT (2), and for GABA receptors.
1(0,0,0,1) Details
16632817 Eger EI 2nd, Liao M, Laster MJ, Won A, Popovich J, Raines DE, Solt K, Dutton RC, Cobos FV 2nd, Sonner JM: Contrasting roles of the N-methyl-D-aspartate receptor in the production of immobilization by conventional and aromatic anesthetics. Anesth Analg. 2006 May;102(5):1397-406.


To test this hypothesis, we measured the effect of IV infusion of the NMDA blockers dizocilpine (MK-801) and (R)-4-(3-phosphonopropyl) piperazine-2-carboxylic acid (CPP) to decrease the MAC (the minimum alveolar concentration of anesthetic that prevents movement in 50% of subjects given a noxious stimulation) of 8 conventional anesthetics (cyclopropane, desflurane, enflurane, halothane, isoflurane, nitrous oxide, sevoflurane, and xenon) and 8 aromatic compounds (benzene, fluorobenzene, o-difluorobenzene, p-difluorobenzene, 1,2,4-trifluorobenzene, 1,3,5-trifluorobenzene, pentafluorobenzene, and hexafluorobenzene) and, for comparison, etomidate.
0(0,0,0,0) Details