Protein Information

ID 24
Name muscles
Synonyms COX 7a M; COX VIIa M; COX7A; COX7A1; COX7A1 protein; COX7AH; COX7AM; Cytochrome c oxidase subunit 7a H…

Compound Information

ID 360
Name streptomycin
CAS

Reference

PubMed Abstract RScore(About this table)
15235080 Calaghan S, White E: Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart. J Physiol. 2004 Aug 15;559(Pt 1):205-14. Epub 2004 Jul 2.
We present the first direct comparison of the major candidates proposed to underlie the slow phase of the force increase seen following myocardial stretch: (i) the Na (+)-H (+) exchanger (NHE) (ii) nitric oxide (NO) and the ryanodine receptor (RyR) and (iii) the stretch-activated channel (SAC) in both single myocytes and multicellular muscle preparations from the rat heart. Ventricular myocytes were stretched by approximately 7% using carbon fibres. Papillary muscles were stretched from 88 to 98% of the length at which maximum tension is generated (L (max)). Inhibition of NHE with HOE 642 (5 microm) significantly reduced (P < 0.05) the magnitude of the slow force response in both muscle and myocytes. Neither inhibition of phosphatidylinositol-3-OH kinase (PtdIns-3-OH kinase) with LY294002 (10 microm) nor NO synthase with L-NAME (1 mm) reduced the slow force response in muscle or myocytes (P > 0.05), and the slow response was still present in the single myocyte when the sarcoplasmic reticulum was rigorously inhibited with 1 microm ryanodine and 1 microm thapsigargin. We saw a significant reduction (P < 0.05) in the slow force response in the presence of the SAC blocker streptomycin in both muscle (80 microm) and myocytes (40 microm). In fura 2-loaded myocytes, HOE 642 and streptomycin, but not L-NAME, ablated the stretch-induced increase in [Ca (2+)](i) transient amplitude. Our data suggest that in the rat, under our experimental conditions, there are two mechanisms that underlie the slow inotropic response to stretch: activation of NHE; and of activation of SACs. Both these mechanisms are intrinsic to the myocyte.
1(0,0,0,1)