Protein Information

ID 36
Name glutathione S transferase
Synonyms GST class alpha 2; Gst2; GST class alpha; GST class alpha member 2; GST gamma; GSTA 2; GSTA2; GSTA2 2…

Compound Information

ID 186
Name dichlorvos
CAS 2,2-dichloroethenyl dimethyl phosphate

Reference

PubMed Abstract RScore(About this table)
10826201 Jensen SE: Mechanisms associated with methiocarb resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol. 2000 Apr;93(2):464-71.
Biochemical mechanisms associated with methiocarb resistance were examined in laboratory-selected and field populations of the western flower thrips, Frankliniella occidentalis (Pergande). Seven populations were examined and they differed in their susceptibility to methiocarb by 30 times. Including the synergists piperonyl butoxide, a cytochrome P-450 monooxygenase inhibitor, or S,S,S-tributylphosphorotrithioate, an esterase inhibitor, in the methiocarb bioassays partially suppressed resistance in the most resistant populations. In vitro assays of general esterase, glutathione S-transferase, and acetylcholinesterase activities showed increased activity in some of the resistant populations and increased activity of the enzymes after methiocarb selection on one of the populations. Assays of acetylcholinesterase sensitivity to inhibition by methiocarb, dichlorvos, and eserine suggested insensitive acetylcholinesterase in two of the resistant populations. These results indicate that methiocarb resistance in F. occidentalis was polyfactorial and involved detoxification and altered target site. None of the biochemical assays showed interpopulation enzymatic differences strongly correlated with the level of methiocarb resistance. The possibilities for developing rapid biochemical diagnostic assays to detect methiocarb resistance in F. occidentalis are discussed.
1(0,0,0,1)