Protein Information

ID 1005
Name tissue transglutaminase
Synonyms Protein glutamine gamma glutamyltransferase 2; TG(C); TG2; TGC; TGM 2; TGM2; TGM2 protein; TGase C…

Compound Information

ID 614
Name potassium thiocyanate
CAS potassium thiocyanate

Reference

PubMed Abstract RScore(About this table)
1683874 Upchurch HF, Conway E, Patterson MK Jr, Maxwell MD: Localization of cellular transglutaminase on the extracellular matrix after wounding: characteristics of the matrix bound enzyme. J Cell Physiol. 1991 Dec;149(3):375-82.
Extending our previous observation that tissue transglutaminase (TGase) binds to extracellular matrix (ECM) fibronectin, we report here that endogenous tissue TGase is localized on the adjacent ECM after puncture wounding embryonic human lung fibroblasts (WI-38). The bound TGase persisted at the wound site for many hours, demonstrated by immunofluorescence and by catalytic activity using an overlay assay. The binding characteristics of TGase with ECM were studied further by the addition of exogenous TGase to cell monolayers and monitoring by immunofluorescence or overlay catalytic activity assays. Binding occurred equally well at 4 degrees C or 37 degrees C. Prior incubation of exogenous TGase with guanosine 5'-triphosphate (GTP), guanosine 5'-diphosphate (GDP), or adenosine triphosphate (ATP) had little effect on the amount bound to matrix, but prior treatment with calcium, magnesium, strontium, or manganese ions enhanced binding 2- to 3-fold. The Ca (++)-dependent change was a concentration-dependent effect on soluble exogenous TGase, rather than an effect on ECM. Immunofluorescent techniques showed that binding of exogenous TGase to ECM was prevented by prior mixing with fibronectin or collagen, but not with several other ECM components, including laminin, elastin, chondroitin sulfate, heparan sulfate, and hyaluronic acid. ECM-bound TGase was released by 2 M potassium thiocyanate (KSCN) treatment but was not released by treatment with a variety of amino acids, salts, reducing agents, glycerol, or other chaotropic agents.
1(0,0,0,1)