Protein Information

ID 13
Name catalase
Synonyms CAT; Catalase; Erythrocyte derived growth promoting factor; Carnitine O acetyltransferase; Carnitine acetylase; Carnitine acetyltransferase; CAT; Catalases…

Compound Information

ID 615
Name sodium azide
CAS sodium azide

Reference

PubMed Abstract RScore(About this table)
12581189 Amer J, Goldfarb A, Fibach E: Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Biochim Biophys Acta. 1999 Sep 21;1421(1):131-9.
Reactive oxygen species (ROS) contribute to the pathogenesis of several hereditary disorders of red blood cells (RBCs), including thalassaemia. We report here on a modified flow cytometric method for measuring ROS in normal and thalassaemic RBCs. RBCs were incubated with 0.4 mM 2',7'-dichlorofluorescin diacetate (DCFH-DA), then washed and further incubated either with or without 2 mM H2O2. Flow cytometric analysis showed that RBC fluorescence increased with time; it increased faster and reached higher intensity (by 10-30-fold) in H2O2-stimulated RBCs as compared to unstimulated RBCs. In both cases, the antioxidant N-acetyl-l-cysteine reduced fluorescence, confirming previous reports that DCFH fluorescence is mediated by ROS. While the fluorescence of unstimulated RBCs increased with time, probably because of exposure to atmospheric oxygen, in H2O2-stimulated RBCs fluorescence decreased after 30 min. The latter effect is most likely related to H2O2 decomposition by catalase as both sodium azide, an antimetabolite that inhibits catalase and low temperature increased the fluorescence of stimulated RBCs. Washing had a similar effect, suggesting that maintenance of the oxidised DCF requires a constant supply of ROS. We next studied RBCs of beta-thalassaemic patients. The results demonstrated a significantly higher ROS generation by stimulated and unstimulated thalassaemic RBCs compared to their normal counterparts. These results suggest that flow cytometry can be useful for measuring the ROS status of RBCs in various diseases and for studying chemical agents as antioxidants.
81(1,1,1,1)