Protein Information

ID 88
Name Acetylcholinesterase
Synonyms ACHE; ACHE protein; AChE; ARACHE; AcChoEase; Acetylcholine acetylhydrolase; Acetylcholinesterase; Acetylcholinesterase isoform E4 E6 variant…

Compound Information

ID 616
Name mercuric chloride
CAS

Reference

PubMed Abstract RScore(About this table)
9096309 Shin I, Kreimer D, Silman I, Weiner L: Membrane-promoted unfolding of acetylcholinesterase: a possible mechanism for insertion into the lipid bilayer. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2848-52.
Acetylcholinesterase from Torpedo californica partially unfolds to a state with the physicochemical characteristics of a "molten globule" upon mild thermal denaturation or upon chemical modification of a single non-conserved buried cysteine residue, Cys231. The protein in this state binds tightly to liposomes. It is here shown that the rate of unfolding is greatly enhanced in the presence of unilamellar vesicles of dimyristoylphosphatidylcholine, with concomitant incorporation of the protein into the lipid bilayer. Arrhenius plots reveal that in the presence of the liposomes the energy barrier for transition from the native to the molten globule state is lowered from 145 to 47 kcal/mol. Chemical modification of Cys231 by mercuric chloride produces initially a quasinative state of Torpedo acetylcholinesterase which, at room temperature, undergoes spontaneous transition to a molten globule state with a half-life of 1-2 hr. This permitted temporal resolution of interaction of the quasi-native state with the membrane from the transition of the membrane-bound protein to the molten globule state. The data presented here suggest that either the native enzyme, or a quasi-native state with which it is in equilibrium, interacts with the liposome, which then promotes a fast transition to the membrane-bound molten globule state by lowering the energy barrier for the transition. These findings raise the possibility that the membrane itself, by lowering the energy barrier for transition to a partially unfolded state, may play an active posttranslational role in insertion and translocation of proteins in situ.
33(0,1,1,3)