Protein Information

ID 133
Name Fatty acid amide hydrolase
Synonyms Anandamide amidohydrolase; FAAH; Fatty acid amide hydrolase; Oleamide hydrolase; Oleamide hydrolase Anandamide amidohydrolase FAAH; Fatty acid amide hydrolases; Oleamide hydrolases; Oleamide hydrolase Anandamide amidohydrolase FAAHs

Compound Information

ID 477
Name biphenyl
CAS 1,1′-biphenyl

Reference

PubMed Abstract RScore(About this table)
18507372 Mor M, Lodola A, Rivara S, Vacondio F, Duranti A, Tontini A, Sanchini S, Piersanti G, Clapper JR, King AR, Tarzia G, Piomelli D: Synthesis and quantitative structure-activity relationship of fatty acid amide hydrolase inhibitors: modulation at the N-portion of biphenyl-3-yl alkylcarbamates. J Med Chem. 2008 Jun 26;51(12):3487-98. Epub 2008 May 29.
Alkylcarbamic acid biphenyl-3-yl esters are a class of fatty acid amide hydrolase (FAAH) inhibitors that comprises cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester (URB597), a compound with analgesic, anxiolytic-like and antidepressant-like properties in rat and mouse models. Here, we extended the structure-activity relationships (SARs) for this class of compounds by replacing the cyclohexyl ring of the parent compound cyclohexylcarbamic acid biphenyl-3-yl ester (URB524) (FAAH IC50 = 63 nM) with a selected set of substituents of different size, shape, flexibility, and lipophilicity. Docking experiments and linear interaction energy (LIE) calculations indicated that the N-terminal group of O-arylcarbamates fits within the lipophilic region of the substrate-binding site, mimicking the arachidonoyl chain of anandamide. Significant potency improvements were observed for the beta-naphthylmethyl derivative 4q (IC50 = 5.3 nM) and its 3'-carbamoylbiphenyl-3-yl ester 4z (URB880, IC50 = 0.63 nM), indicating that shape complementarity and hydrogen bonds are crucial to obtain highly potent inhibitors.
68(0,2,3,3)