Protein Information

ID 1054
Name chemokine
Synonyms CXCL12; Chemokine; Chemokine ligand 12; PBSF; Pre B cell growth stimulating factor; SCYB12; SDF 1 alpha; SDF 1 beta…

Compound Information

ID 477
Name biphenyl
CAS 1,1′-biphenyl

Reference

PubMed Abstract RScore(About this table)
19808375 Kassiri Z, Zhong J, Guo D, Basu R, Wang X, Liu PP, Scholey JW, Penninger JM, Oudit GY: Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail. 2009 Sep;2(5):446-55. Epub 2009 Jun 15.
BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that metabolizes Ang II into Ang 1-7, thereby functioning as a negative regulator of the renin-angiotensin system. We hypothesized that ACE2 deficiency may compromise the cardiac response to myocardial infarction (MI). METHODS AND RESULTS: In response to MI (induced by left anterior descending artery ligation), there was a persistent increase in ACE2 protein in the infarct zone in wild-type mice, whereas loss of ACE2 enhanced the susceptibility to MI, with increased mortality, infarct expansion, and adverse ventricular remodeling characterized by ventricular dilation and systolic dysfunction. In ACE2-deficient hearts, elevated myocardial levels of Ang II and decreased levels of Ang 1-7 in the infarct-related zone was associated with increased production of reactive oxygen species. ACE2 deficiency leads to increased matrix metalloproteinase (MMP) 2 and MMP9 levels with MMP2 activation in the infarct and peri-infarct regions, as well as increased gelatinase activity leading to a disrupted extracellular matrix structure after MI. Loss of ACE2 also leads to increased neutrophilic infiltration in the infarct and peri-infarct regions, resulting in upregulation of inflammatory cytokines, interferon-gamma, interleukin-6, and the chemokine, monocyte chemoattractant protein-1, as well as increased phosphorylation of ERK1/2 and JNK1/2 signaling pathways. Treatment of Ace2 (-)(/y)-MI mice with irbesartan, an AT1 receptor blocker, reduced nicotinamide-adenine dinucleotide phosphate oxidase activity, infarct size, MMP activation, and myocardial inflammation, ultimately resulting in improved post-MI ventricular function. CONCLUSIONS: We conclude that loss of ACE2 facilitates adverse post-MI ventricular remodeling by potentiation of Ang II effects by means of the AT1 receptors, and supplementing ACE2 can be a potential therapy for ischemic heart disease.
1(0,0,0,1)