Protein Information

ID 1439
Name Bcl w
Synonyms Apoptosis regulator Bcl W; Apoptosis regulator BclW; BCL W; BCL2 like 2 protein; BCL2 like 2; BCL2L2; BCLW; Bcl 2 like 2 protein…

Compound Information

ID 477
Name biphenyl
CAS 1,1′-biphenyl

Reference

PubMed Abstract RScore(About this table)
20038611 High LM, Szymanska B, Wilczynska-Kalak U, Barber N, O'Brien R, Khaw SL, Vikstrom IB, Roberts AW, Lock RB: The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol. 2010 Mar;77(3):483-94. Epub 2009 Dec 28.
Antiapoptotic Bcl-2 proteins are overexpressed in a number of cancers, including leukemias, and are frequently associated with resistance to conventional chemotherapeutic drugs. ABT-737, a Bcl-2 homology domain 3 mimetic (for structure, see Nature 435:677-681, 2005) inhibits the prosurvival function of Bcl-2, Bcl-X (L), and Bcl-w. We show that ABT-737 was effective as a single agent against a panel of pediatric acute lymphoblastic leukemia (ALL) xenografts, previously established, from patient biopsies, in immunodeficient mice. Although in vitro resistance of leukemia cell lines correlated with expression of the prosurvival protein Mcl-1, there was no relationship between Mcl-1 expression and in vivo xenograft response to ABT-737. However, expression of the pro-apoptotic protein Bim, and the extent of its association with Bcl-2, significantly correlated with in vivo ABT-737 sensitivity. ABT-737 potentiated the antileukemic effects of L-asparaginase, topotecan, vincristine, and etoposide against drug-resistant xenografts in vitro and in vivo. Finally, we show that the combination of L-asparaginase (by specifically down-regulating Mcl-1 protein levels), topotecan (by activating p53 via DNA damage), and ABT-737 (by inhibiting antiapoptotic Bcl-2 family members) caused profound synergistic antileukemic efficacy both in vitro and in vivo. Rational targeting of specific components of the apoptotic pathway may be a useful approach to improve the treatment of refractory or relapsed pediatric ALL. Overall, this study supports the inclusion of the clinical derivative of ABT-737, ABT-263 (for structure, see Cancer Res 68:3421-3428, 2008), into clinical trials against relapsed/refractory pediatric ALL.
1(0,0,0,1)