Protein Information

ID 36
Name glutathione S transferase
Synonyms GST class alpha 2; Gst2; GST class alpha; GST class alpha member 2; GST gamma; GSTA 2; GSTA2; GSTA2 2…

Compound Information

ID 480
Name chlorothalonil
CAS 2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile

Reference

PubMed Abstract RScore(About this table)
20148249 Liang B, Li R, Jiang D, Sun J, Qiu J, Zhao Y, Li S, Jiang J: Hydrolytic Dechlorination of Chlorothalonil by Ochrobactrum sp. Curr Microbiol. 2010 Feb 11.
CTN-11 Isolated from a Chlorothalonil-Contaminated Soil.. A bacterial strain, designated as CTN-11, capable of degrading chlorothalonil (CTN), was isolated from a chlorothalonil-contaminated soil in China. Based on the morphological, biochemical characteristics and comparative analysis of the 16S rRNA genes, strain CTN-11 was identified as Ochrobactrum sp. Strain CTN-11 could degrade 50 mg l (-1) CTN to a non-detectable level within 48 h, and efficiently degrade CTN in a relatively broad range of temperatures from 20 to 40 degrees C and initial pH values from 6.0 to 9.0. The new isolate differed from those previously reported CTN co-metabolic degraders by transforming CTN in the absence of other carbon sources. A glutathione S-transferase (GST) coding gene, which showed 88% sequence similarity with that from Ochrobactrum anthropi SH35B, was cloned from strain CTN-11. However, the gene was not functionally expressed in the presence of glutathione, indicating that CTN was not reductively dechlorinated by thiolytic substitution catalyzed by GST in strain CTN-11. The metabolite hydroxyl-trichloroisophthalonitrile (CTN-OH) produced during CTN anaerobic degradation was identified based on tandem MS/MS, confirming that hydrolytic dechlorination was involved in the CTN degradation. The removal of CTN by strain CTN-11 in sterile and non-sterile soils was also studied. In both soil samples, 50 mg kg (-1) CTN could be degraded to an undetectable level within 3 days. This study highlights an important potential use of strain CTN-11 for the cleanup of CTN-contaminated sites and presents a hydrolytic dechlorination reaction of CTN by a pure culture.
1(0,0,0,1)