Protein Information

ID 31
Name transferase
Synonyms 4' phosphopantetheinyl transferase; 4' phosphopantetheinyl transferase; AASD PPT; AASDHPPT; AASDPPT; Alpha aminoadipic semialdehyde dehydrogenase phosphopantetheinyl transferase; Aminoadipate semialdehyde dehydrogenase phosphopantetheinyl transferase; CGI 80…

Compound Information

ID 714
Name allyl alcohol
CAS 2-propen-1-ol

Reference

PubMed Abstract RScore(About this table)
15940471 Anand SS, Mumtaz MM, Mehendale HM: Dose-dependent liver regeneration in chloroform, trichloroethylene and allyl alcohol ternary mixture hepatotoxicity in rats. Arch Toxicol. 2005 Nov;79(11):671-82. Epub 2005 Jun 7.
The present study was designed to examine the hypothesis that liver tissue repair induced after exposure to chloroform (CF) + trichloroethylene (TCE) + allyl alcohol (AA) ternary mixture (TM) is dose-dependent similar to that elicited by exposure to these compounds individually. Male Sprague Dawley (S-D) rats (250-300 g) were administered with fivefold dose range of CF (74-370 mg/kg, ip), and TCE (250-1250 mg/kg, ip) in corn oil and sevenfold dose range of AA (5-35 mg/kg, ip) in distilled water. Liver injury was assessed by plasma alanine amino transferase (ALT) activity and liver tissue repair was measured by (3) H-thymidine incorporation into hepatonuclear DNA. Blood and liver levels of parent compounds and two major metabolites of TCE [trichloroacetic acid (TCA) and trichloroethanol (TCOH)] were quantified by gas chromatography. Blood and liver CF and AA levels after TM were similar to CF alone or AA alone, respectively. However, the TCE levels in blood and liver were substantially decreased after TM in a dose-dependent fashion compared to TCE alone. Decreased plasma and liver TCE levels were consistent with decreased production of metabolites and elevated urinary excretion of TCE. The antagonistic interaction resulted in lower liver injury than the summation of injury caused by the individual components at all three-dose levels. On the other hand, tissue repair showed a dose-response leading to regression of injury. Although the liver injury was lower and progression was contained by timely tissue repair, 50% mortality occurred only with the high dose combination, which is several fold higher than environmental levels. The mortality could be due to the central nervous system toxicity. These findings suggest that exposure to TM results in lower initial liver injury owing to higher elimination of TCE, and the compensatory liver tissue repair stimulated in a dose-dependent manner mitigates progression of injury after exposure to TM.
1(0,0,0,1)