Protein Information

ID 259
Name protoporphyrinogen oxidase
Synonyms Mutant protoporphyrinogen oxidase; VP; PPO; PPOX; Protoporphyrinogen oxidase; V290M; Protoporphyrinogen oxidases

Compound Information

ID 935
Name acifluorfen
CAS 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid

Reference

PubMed Abstract RScore(About this table)
17714436 Froissard M, Belgareh-Touze N, Dias M, Buisson N, Camadro JM, Haguenauer-Tsapis R, Lesuisse E: Trafficking of siderophore transporters in Saccharomyces cerevisiae and intracellular fate of ferrioxamine B conjugates. Traffic. 2007 Nov;8(11):1601-16. Epub 2007 Aug 20.
We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process.
0(0,0,0,0)