Protein Information

ID 1799
Name smooth muscle actin
Synonyms ACTC; ACTC 1; ACTC1; Alpha cardiac actin; CMD1R; Smooth muscle actin; Alpha cardiac actins; Smooth muscle actins

Compound Information

ID 954
Name SMA
CAS sodium 2-chloroacetate

Reference

PubMed Abstract RScore(About this table)
17674035 Budny T, Palmes D, Stratmann U, Minin E, Herbst H, Spiegel HU: Morphologic features in the regenerating liver--a comparative intravital, lightmicroscopical and ultrastructural analysis with focus on hepatic stellate cells. Nephrology. 2008 Dec;13(8):694-701.
Different cell types play a role in the liver regeneration. The present study reveals morphological key steps of liver regeneration by correlating intravital, light, and electron microscopic with immunohistochemistry results focusing on hepatic stellate cells (HSCs). In Lewis rats, liver regeneration was induced by a 2/3-hepatectomy. Animals (n = 7 each) were killed after 0, 1, 2, 3, 4, 7, and 14 days. Morphological features were investigated by light microscopy, immunohistochemistry [alpha-smooth muscle actin (alpha-SMA), Desmin, vascular endothelial growth factor (VEGF)/VEGF receptor, Ki-67, ssDNA], intravital microscopy (sinusoid density, number of hepatocytes, and HSC), and electron microscopy focussed on cell-to-cell interactions. During liver regeneration, HSC were activated at day 3 showing a loss of autofluorescence and simultaneously an increased alpha-SMA expression and direct cell contact to hepatocytes. HSC activation was followed by increasing VEGF expression and sinusoid density. After 14 days, liver architecture and ultrastructure was restored and HSCs were deactivated showing decreased alpha-SMA expression as well as increased apoptosis and no more direct cell contact to hepatocytes. HSCs play a central role in the regenerating liver by governing angiogenesis and extracellular matrix remodeling. A direct cell contact to hepatocytes seems to be essential for HSC activation, whereas deactivation is accompanied by loosening of hepatocyte contact and increased apoptosis.
1(0,0,0,1)