Protein Information

ID 1729
Name acetolactate synthase
Synonyms Acetolactate synthase; OR10B1P

Compound Information

ID 961
Name imazethapyr
CAS

Reference

PubMed Abstract RScore(About this table)
16159177 Zabalza A, Gonzalez EM, Arrese-Igor C, Royuela M: Fermentative metabolism is induced by inhibiting different enzymes of the branched-chain amino acid biosynthesis pathway in pea plants. J Agric Food Chem. 2005 Sep 21;53(19):7486-93.
The inhibition of branched-chain amino acid (BCAA) biosynthesis was evaluated in pea plants in relation to the ability for induction of fermentative metabolism under aerobic conditions. Chlorsulfuron and imazethapyr (inhibitors of acetolactate synthase, ALS, EC 4.1.3.18) produced a strong induction of pyruvate decarboxylase (PDC, EC 4.1.1.1) and alcohol dehydrogenase (ADH, EC 1.1.1.1) activities and a lesser induction of lactate dehydrogenase (LDH, EC 1.1.1.27) and alanine aminotransferase (AlaAT, EC 2.6.1.2) activities in roots. Inhibition of the second enzyme of the BCAA biosynthesis (ketol-acid reductoisomerase, KARI, EC 1.1.1.86) by Hoe 704 (2-dimethylphosphinoyl-2-hydroxyacetic acid) and CPCA (1,1-cyclopropanedicarboxylic acid) enhanced fermentative enzyme activities including PDC, ADH, and AlaAT. Fermentative metabolism induction occurring with ALS- and KARI-inhibitors was related to a higher expression of PDC. In the case of KARI inhibition, it is proposed that fermentation induction is due to an inhibition of ALS activity resulted from an increase in acetolactate concentration. Fermentative metabolism induction in roots, or at least ethanolic fermentation, appeared to be a general physiological response to the BCAA biosynthesis inhibition.
1(0,0,0,1)