Protein Information

ID 810
Name ATPases
Synonyms (NA+ + K+)ATPase; ATP1A1; ATPase; ATPase Na+/K+ transporting alpha 1 polypeptide; Na (+) K (+) ATPase; Na (+),K (+) ATPase; Na + K + ATPase; Na K + ATPase…

Compound Information

ID 965
Name ferrous sulfate
CAS sulfuric acid iron(2+) salt (1:1)

Reference

PubMed Abstract RScore(About this table)
10905541 Agil A, Sadrzadeh SM: Hydroxy-urea protects erythrocytes against oxidative damage. Redox Rep. 2000;5(1):29-34.
Hydroxy-urea (OH-U) is used to treat sickle cell anemia by increasing hemoglobin fetal-fraction. It has been suggested that the sickle cell mutations lead to the formation of unstable HbS and release of iron, which can result in lipid peroxidation (LPO), and eventual cell damage. Since oxidative processes might be involved in pathogenesis of sickle cell disease, we investigated the antioxidant property of OH-U in a red blood cell (RBC) model. Intact RBCs or RBC membranes were exposed to t-butyl hydroperoxide (t-BHP, 0.75 mM) or iron (ferrous sulfate; 100 microM) at 37 degrees C for 60 min in the presence or absence of OH-U (1.25 mM). The extent of oxidative damage was measured by LPO (as thiobarbituric acid reactive substances, TBARS), hemoglobin oxidation (as percent of methemoglobin, metHb %), and decrease in the activities of membrane-bound Na+/K+-ATPase and Ca2+-ATPases. Our results show that OH-U inhibited t-BHP-induced LPO in fresh RBC membranes significantly (P <0.01). OH-U significantly inhibited t-BHP-mediated LPO (P <0.01) and metHb formation (P <0.01) in intact RBC. Also, OH-U inhibited iron-induced LPO and metHb formation in intact RBC (P <0.01). In addition, OH-U blocked t-BHP-mediated changes in membrane ATPase activities. Furthermore, OH-U blocked iron-mediated hydroxyl radical generation in a dose-dependent fashion. In conclusion, the observed antioxidant properties of OH-U might contribute to its therapeutic action in sickle cell disease.
1(0,0,0,1)