Protein Information

ID 759
Name ferritin (protein family or complex)
Synonyms Ferritin; Ferritins

Compound Information

ID 965
Name ferrous sulfate
CAS sulfuric acid iron(2+) salt (1:1)

Reference

PubMed Abstract RScore(About this table)
17002471 Zhu L, Glahn RP, Yeung CK, Miller DD: Iron uptake by Caco-2 cells from NaFeEDTA and FeSO4: Effects of ascorbic acid, pH, and a Fe (II) chelating agent. J Agric Food Chem. 2006 Oct 4;54(20):7924-8.
Sodium iron (III) ethylenediaminetetraacetate (NaFeEDTA) has considerable promise as an iron fortificant because of its high bioavailability in foods containing iron absorption inhibitors. In this study, uptakes of iron from NaFeEDTA, FeSO4, and FeCl3 by Caco-2 cells were compared in the absence or presence of ascorbic acid (AA), an iron absorption enhancer; at selected pH levels; and in the absence or presence of an iron absorption inhibitor, bathophenanthroline disulfonic acid (BPDS). Ferritin formation in the cells was used as the indicator of iron uptake. Uptake from all three Fe sources was similar in the absence of AA. Adding AA at a 5:1 molar excess as compared to Fe increased uptake by 5.4-, 5.1-, and 2.8-fold for FeSO4, FeCl3, and NaFeEDTA, respectively. The smaller effect of AA on uptake from NaFeEDTA may be related to the higher solubility of NaFeEDTA and/or the strong binding affinity of EDTA for Fe3+, which may prevent AA and duodenal cytochrome b from effectively reducing EDTA-bound Fe. Uptake was inversely related to the pH of the media over a range of 5.8-7.2. Because uptake by DMT-1 is proton-coupled, the inverse relationship between pH and Fe uptake in all three iron sources suggests that they all follow the DMT-1 pathway into the cell. Adding BPDS to the media inhibited uptake from all three iron compounds equally. Because BPDS binds Fe2+ but not Fe3+ and because only Fe2+ is transported by DMT-1, the finding that BPDS inhibited uptake from NaFeEDTA suggests that at least some iron dissociates from EDTA and is reduced just as simple inorganic iron at the brush border membrane of the enterocyte. Taken together, these results suggest that uptake of iron from NaFeEDTA by intestinal enterocytes is regulated similarly to uptake from iron salts.
1(0,0,0,1)