2385238 |
Serebryanyi AM, Sal'nikova LE, Bakhitova LM, Paschin YuV: Role of the carbamoylation reaction in the biological activity of methyl nitrosourea. Mutat Res. 1990 Aug;231(2):195-203. Study of the mutagenic action of methyl nitrosourea (MNU) on the CHO-AT3-2 Chinese hamster cell at 2 regimes of cell treatment (a short-term regime and prolonged 1-h treatment) revealed that increase in the duration of treatment enhanced both cell lethality and clastogenic and mutagenic effects at the TK locus and did not influence the mutation frequency at the OUAr locus. On the basis of kinetic considerations it can be concluded that the base-pair substitution-type mutants (e.g., OUAr) appear as a result of DNA alkylation and the mutants at loci with a wide spectrum of registered mutants (the TK locus) are related to a greater extent to the carbamoylating activity of MNU. This conclusion is confirmed by measurements of the effects of sequential treatment with MNU (7 min) and KNCO (1 h). A synergistic increase in lethality, clastogenicity and mutagenicity at the TK locus was found in experiments with the combined treatment of cells with ethyl methanesulfonate (EMS) and KNCO. Besides, pretreatment of cells with potassium cyanate and subsequent exposure to MNU, EMS and benzopyrene (BP) produced synergistic effects in all the tests: lethality, clastogenicity and mutation frequency at the OUAr and TK loci. Posttreatment of cells with KNCO also led to a synergistic increase in the effects of MNU, EMS and BP treatment in several tests, but not in the OUAr locus. The possible mechanism and levels of interactions between alkylation and carbamoylation and the possibility that potassium cyanate causes supramolecular lesions are discussed. |
0(0,0,0,0) |