Protein Information

ID 2216
Name CP4
Synonyms Basic proline rich protein; Basic salivary proline rich protein BstNI type 1; Basic salivary proline rich protein 1; Basic salivary proline rich protein 1 precursor; BstNI type basic salivary proline rich protein 1; CP3; CP4; CP5…

Compound Information

ID 988
Name glyphosate
CAS

Reference

PubMed Abstract RScore(About this table)
12835912 Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J: Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep. 2003 Jun;21(10):1010-19. Epub 2003 Apr 12.
An Agrobacterium-mediated transformation system with glyphosate selection has been developed for the large-scale production of transgenic plants. The system uses 4-day precultured immature embryos as explants. A total of 30 vectors containing the 5-enol-pyruvylshikimate-3-phosphate synthase gene from Agrobacterium strain CP4 (aroA:CP4), which confers resistance to glyphosate, were introduced into wheat using this system. The aroA:CP4 gene served two roles in this study-selectable marker and gene of interest. More than 3,000 transgenic events were produced with an average transformation efficiency of 4.4%. The entire process from isolation of immature embryos to production of transgenic plantlets was 50-80 days. Transgenic events were evaluated over several generations based on genetic, agronomic and molecular criteria. Forty-six percent of the transgenic events fit a 3:1 segregation ratio. Molecular analysis confirmed that four of six lead transgenic events selected from Agrobacterium transformation contained a single insert and a single copy of the transgene. Stable expression of theAROA:CP4 gene was confirmed by ELISA through nine generations. A comparison of Agrobacterium-mediated transformation to a particle bombardment system demonstrated that the Agrobacterium system is reproducible, has a higher transformation efficiency with glyphosate selection and produces higher quality transgenic events in wheat. One of the lead events from this study, no. 33391, has been identified as a Roundup Ready wheat commercial candidate.
6(0,0,1,1)