7682576 |
Scott MD, van den Berg JJ, Repka T, Rouyer-Fessard P, Hebbel RP, Beuzard Y, Lubin BH: Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. J Clin Invest. 1993 Apr;91(4):1706-12. While red cells from individuals with beta thalassemias are characterized by evidence of elevated in vivo oxidation, it has not been possible to directly examine the relationship between excess alpha-hemoglobin chains and the observed oxidant damage. To investigate the oxidative effects of unpaired alpha-hemoglobin chains, purified alpha-hemoglobin chains were entrapped within normal erythrocytes. These "model" beta-thalassemic cells generated significantly (P < 0.001) greater amounts of methemoglobin and intracellular hydrogen peroxide than did control cells. This resulted in significant time-dependent decreases in the protein concentrations and reduced thiol content of spectrin and ankyrin. These abnormalities correlated with the rate of alpha-hemoglobin chain autoxidation and appearance of membrane-bound globin. In addition, alpha-hemoglobin chain loading resulted in a direct decrease (38.5%) in catalase activity. In the absence of exogenous oxidants, membrane peroxidation and vitamin E levels were unaltered. However, when challenged with an external oxidant, lipid peroxidation and vitamin E oxidation were significantly (P < 0.001) enhanced in the alpha-hemoglobin chain-loaded cells. Membrane bound heme and iron were also significantly elevated (P < 0.001) in the alpha-hemoglobin chain-loaded cells and lipid peroxidation could be partially inhibited by entrapment of an iron chelator. In contrast, chemical inhibition of cellular catalase activity enhanced the detrimental effects of entrapped alpha-hemoglobin chains. In summary, entrapment of purified alpha-hemoglobin chains within normal erythrocytes significantly enhanced cellular oxidant stress and resulted in pathological changes characteristic of thalassemic cells in vivo. This model provides a means by which the pathophysiological effects of excess alpha-hemoglobin chains can be examined. |
8(0,0,0,8) |