Protein Information

ID 103
Name adenylyl cyclase
Synonyms ADCY 7; ATP pyrophosphate lyase; Adenylyl cyclase; ADCY7; ADCY7 protein; ATP pyrophosphate lyase 7; Adenylate cyclase 7; Adenylate cyclase type 7…

Compound Information

ID 1388
Name sodium fluoride
CAS sodium fluoride (NaF)

Reference

PubMed Abstract RScore(About this table)
9502768 Xiao RP, Tomhave ED, Wang DJ, Ji X, Boluyt MO, Cheng H, Lakatta EG, Koch WJ: Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest. 1998 Mar 15;101(6):1273-82.
While an age-associated diminution in myocardial contractile response to beta-adrenergic receptor (beta-AR) stimulation has been widely demonstrated to occur in the context of increased levels of plasma catecholamines, some critical mechanisms that govern beta-AR signaling must still be examined in aged hearts. Specifically, the contribution of beta-AR subtypes (beta1 versus beta2) to the overall reduction in contractile response with aging is unknown. Additionally, whether G protein-coupled receptor kinases (GRKs), which mediate receptor desensitization, or adenylyl cyclase inhibitory G proteins (Gi) are increased with aging has not been examined. Both these inhibitory mechanisms are upregulated in chronic heart failure, a condition also associated with diminished beta-AR responsiveness and increased circulatory catecholamines. In this study, the contractile responses to both beta1-AR and beta2-AR stimulation were examined in rat ventricular myocytes of a broad age range (2, 8, and 24 mo). A marked age-associated depression in contractile response to both beta-AR subtype stimulation was observed. This was associated with a nonselective reduction in the density of both beta-AR subtypes and a reduction in membrane adenylyl cyclase response to both beta-AR subtype agonists, NaF or forskolin. However, the age-associated diminutions in contractile responses to either beta1-AR or beta2-AR stimulation were not rescued by inhibiting Gi with pertussis toxin treatment. Further, the abundance or activity of beta-adrenergic receptor kinase, GRK5, or Gi did not significantly change with aging. Thus, we conclude that the positive inotropic effects of both beta1- and beta2-AR stimulation are markedly decreased with aging in rat ventricular myocytes and this is accompanied by decreases in both beta-AR subtype densities and a reduction in membrane adenylate cyclase activity. Neither GRKs nor Gi proteins appear to contribute to the age-associated reduction in cardiac beta-AR responsiveness.
1(0,0,0,1)