2405457 |
Pignatello JJ, Cohen SZ: Environmental chemistry of ethylene dibromide in soil and ground water. Rev Environ Contam Toxicol. 1990;112:1-47. Ethylene dibromide is a ground water pollutant principally as a result of its use as a soil pesticide and secondarily from spills or leaks of leaded gasoline in which it is an additive. The compound has been found in over 1900 wells in 4 countries: Japan, Israel, Australia, and the United States (10 states), typically at concentrations of 0.04-4 micrograms/L. The overall rate of detections in suspected areas is about 13%. Its use as a soil fumigant was banned in the US in 1983 because of its carcinogenicity. Concern over gasoline as a source should diminish as leaded fuels all but disappear from the market in many countries. The voluminous research and regulatory attention devoted to EDB has generated a picture, if not an entirely clear one, of how EDB behaves in the environment and what we can expect for the future. EDB is volatile, moderately water soluble, and has only weak equilibrium sorptive affinity for soil. Transport to ground water occurs by both vapor-phase diffusion and by advection with infiltrating water, depending on soil properties and precipitation and irrigation patterns. Models describing these processes have been developed and validated in part by laboratory experiments, but the complexity and heterogeneity of the field makes predictions difficult there. As with other pesticides, experience indicates that areas with permeable soils and shallow water tables are most vulnerable. However, EDB seems to have penetrated many tens of meters of unsaturated zone in some cases to reach the water table. Transport in ground water occurs with bulk water flow, subject to hydrodynamic dispersion effects common to all solutes, and subject to sorptive retardation. From equilibrium sorption partition coefficients, plume migration is likely to be a factor of 2-4 slower than bulk water flow. Hydrolysis is the most important abiotic reaction. The reaction is independent of pH in the range 4-9 and is probably uncatalyzed by particle surfaces. Both SN1 and SN2 mechanisms have been proposed. Estimates of the half-life range from 2-4 yr at 22-25 degrees C, to around two decades at 10 degrees C. These temperatures approximate subsurface conditions in warm climates (e.g., Florida) and temperate climates (e.g., New England), respectively. The major products are ethylene glycol and bromide ion. Both are of little concern at low concentrations. Vinyl bromide, which is a suspected carcinogen, is a minor product in lab studies, but so far there are no reports linking its presence with EDB in the field.(ABSTRACT TRUNCATED AT 400 WORDS) |
1(0,0,0,1) |