7654686 |
Zondlo J, Fisher KE, Lin Z, Ducote KR, Eisenstein E: Monomer-heptamer equilibrium of the Escherichia coli chaperonin GroES. Biochemistry. 1995 Aug 22;34(33):10334-9. In an effort to clarify the role of GroES in chaperonin-facilitated protein folding, a plasmid-encoding expression system for GroES incorporating a histidine-tagged, thrombin-cleavable, N-terminal sequence was constructed. This approach facilitated the rapid purification of native-like, histidine-cleaved GroES (HC-GroES). The addition of NaSCN to purification buffers to mildly promote subunit dissociation enabled the complete separation of chromosomally encoded, wild-type GroES chains from recombinant chains, allowing the production of homogeneous mutant variants of GroES. A substitution of histidine-7 to tryptophan in GroES was used to demonstrate the concentration-dependent modulation of the heptameric quaternary structure of the chaperonin. Fluorescence and light scattering studies of this mutant suggest that GroES heptamers dissociate to monomers upon dilution with half-times of 2-4 min. Sedimentation equilibrium experiments using either wild-type or HC-GroES can best be described by a monomer--heptamer equilibrium, yielding dissociation constants of 1 x 10 (-38) M6 for native GroES and 2 x 10 (-32) M6 for HC-GroES. These results are supported by subunit exchange experiments using mixtures of native or HC-GroES and GroES containing the complete N-terminal histidine tail. Native polyacrylamide gel electrophoresis demonstrates that these mixtures form an eight-membered hybrid set within minutes. The studies described here suggest a dynamic equilibrium for the quaternary structure of GroES, which may be an important feature for its role in GroEL-mediated protein folding reactions. |
1(0,0,0,1) |