17885094 |
Canas N, Valero T, Villarroya M, Montell E, Verges J, Garcia AG, Lopez MG: Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing heme oxygenase-1 via phosphatidylinositol 3-kinase/Akt. J Pharmacol Exp Ther. 2007 Dec;323(3):946-53. Epub 2007 Sep 20. We investigated the mechanism of the neuroprotective properties of chondroitin sulfate (CS), an endogenous perineuronal net glycosaminoglycan, in human neuroblastoma SH-SY5Y cells subjected to oxidative stress. Preincubation with CS for 24 h afforded concentration-dependent protection against H2O2-induced toxicity (50 microM for 24 h) measured as lactic dehydrogenase released to the incubation media; cell death was prevented at the concentrations of 600 and 1000 microM. Cell death caused by a combination of 10 microM rotenone plus 1 microM oligomycin-A (Rot/oligo) was also reduced by CS at concentrations ranging from 0.3 to 100 microM; in this toxicity model, maximum protection was achieved at 3 microM (48%). No significant protection was observed in a cell death model of Ca2+ overload (70 mM K+, for 24 h). H2O2 and Rot/oligo generated reactive oxygen species (ROS) measured as an increase in the fluorescence of dichlorofluorescein diacetate-loaded cells. CS drastically reduced ROS generation induced by both H2O2 (extracellular ROS) and Rot/oligo (intracellular ROS). CS also increased the expression of phosphorylated Akt and heme oxygenase-1 by 2-fold. The protective effects of CS were prevented by chelerythrine, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), cycloheximide, and Sn (IV)-protoporphyrin IX. Taken together, these results show that CS can protect SH-SY5Y cells under oxidative stress conditions by activating protein kinase C, which phosphorylates Akt that, via the phosphatidylinositol 3-kinase/Akt pathway, induces the synthesis of the antioxidant protein heme oxygenase-1. |
1(0,0,0,1) |