Protein Information

ID 337
Name CA3
Synonyms CA III; Carbonic anhydrase C; CA3; CAIII; Car3; Carbonate dehydratase III; Carbonic anhydrase 3; Carbonic anhydrase III…

Compound Information

ID 332
Name 4-aminopyridine
CAS 4-pyridinamine

Reference

PubMed Abstract RScore(About this table)
10963750 Bonnet U, Leniger T, Wiemann M: Moclobemide reduces intracellular pH and neuronal activity of CA3 neurones in guinea-pig hippocampal slices-implication for its neuroprotective properties. Neuropharmacology. 2000 Aug 23;39(11):2067-74.
Mechanisms underlying the neuroprotective properties of the weak MAO-A inhibitor moclobemide are not understood. Increasing evidence suggests that a moderate increase in intracellular free protons may contribute to neuroprotective properties due to a proton-mediated decrease in neuronal activity. Therefore, we studied effects of 10-700 microM moclobemide (i) on the intracellular pH (pH (i)) of BCECF-AM loaded CA3 neurones as well as (ii) on spontaneous action potentials and epileptiform activity (induced by bicuculline-methiodide, caffeine, or 4-aminopyridine) of CA3 neurones in the stratum pyramidale. Moclobemide-concentrations of > or = 300 microM reversibly reduced the steady-state pH (i) by up to 0. 25 pH-units within 5-20 min. Simultaneously, the frequency of spontaneous action potentials and epileptiform discharges became depressed. Moclobemide also abolished 4-aminopyridine-induced GABA-mediated hyperpolarisations suggesting that the inhibitory and acidifying effects of moclobemide do not result from an amplification of the GABA system. The stronger MAO-A inhibitors clorgyline or pargyline (both 10 microM) mimicked the moclobemide-effects. Investigating effects on pH (i)-regulation we found that 700 microM moclobemide impaired the recovery from intracellular acidification elicited by an ammonium prepulse which demonstrates an impairment of transmembrane acid extrusion. We suggest that the latter effect is responsible for the moderate decrease in the steady-state pH (i) which in turn reduced neuronal activity. This mechanism may substantially contribute to the neuroprotective properties of moclobemide.
7(0,0,1,2)