15794752 |
Falchi AM, Isola R, Diana A, Putzolu M, Diaz G: Characterization of depolarization and repolarization phases of mitochondrial membrane potential fluctuations induced by tetramethylrhodamine methyl ester photoactivation. FEBS J. 2005 Apr;272(7):1649-59. Depolarization and repolarization phases (D and R phases, respectively) of mitochondrial potential fluctuations induced by photoactivation of the fluorescent probe tetramethylrhodamine methyl ester (TMRM) were analyzed separately and investigated using specific inhibitors and substrates. The frequency of R phases was significantly inhibited by oligomycin and aurovertin (mitochondrial ATP synthase inhibitors), rotenone (mitochondrial complex I inhibitor) and iodoacetic acid (inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase). Succinic acid (mitochondrial complex II substrate, given in the permeable form of dimethyl ester) abolished the rotenone-induced inhibition of R phases. Taken together, these findings indicate that the activity of both respiratory chain and ATP synthase were required for the recovery of the mitochondrial potential. The frequency of D phases prevailed over that of R phases in all experimental conditions, resulting in a progressive depolarization of mitochondria accompanied by NAD (P) H oxidation and Ca2+ influx. D phases were not blocked by cyclosporin A (inhibitor of the permeability transition pore) or o-phenyl-EGTA (a Ca2+ chelator), suggesting that the permeability transition pore was not involved in mitochondrial potential fluctuations. |
81(1,1,1,1) |