17537412 |
Maranghi F, Rescia M, Macri C, Di Consiglio E, De Angelis G, Testai E, Farini D, De Felici M, Lorenzetti S, Mantovani A: Lindane may modulate the female reproductive development through the interaction with ER-beta: an in vivo-in vitro approach. Chem Biol Interact. 2007 Aug 15;169(1):1-14. Epub 2007 Apr 22. Lindane (gamma-HCH) is a persistent environmental pollutant that may act as endocrine disrupter, affecting the nervous, immune and reproductive system, possibly through endocrine-mediated mechanisms. Since both estrogen receptors (ER-alpha and -beta) have shown to be target for endocrine disruption, we investigated the role of gamma-HCH on the development of female reproductive system. For an in vivo evaluation of gamma-HCH effects during prenatal period, pregnant CD1 mice were treated p.o. on gestational days 9-16 with 15 mg/kg bw/day of gamma-HCH and vehicle. The in vivo findings in treated F1 pups - in the absence of signs of systemic toxicity - included increase in the absolute and relative and absolute uterus weight revealed on post-natal day 22, earlier vaginal patency and reduced diameters of primary oocytes at fully sexual maturity. No effects on steroid hormone metabolism (aromatase, testosterone catabolism) were observed. Thus, gamma-HCH elicited subtle effects on female reproductive development likely mediated by ER-beta-mediated pathway (s), without a concurrent impairment of steroid hormone metabolism. Furthermore, to verify whether the endocrine interference of gamma-HCH is attributable to stimulation of ER-beta-mediated pathway (s), its effect has been evaluated in vitro on a cell line, LNCaP, expressing only functional ER-beta. In vitro treatments revealed a concentration-related effect on LNCaP cell viability and proliferation. Significantly, the contemporary addition of a pure anti-estrogen, the ER antagonist ICI 182,780, completely reversed gamma-HCH effects indicating an ER-beta-mediated action. Our findings indicate that gamma-HCH may act as endocrine disruptor during the female reproductive system development and ER-beta as a potential target for this compound and other endocrine disrupting chemicals as well. |
1(0,0,0,1) |