Protein Information

ID 3201
Name ACCB
Synonyms ACACB; Biotin carboxylase; ACC beta; ACC2; ACCB; ACCbeta; Acetyl CoA carboxylase 2; Acetyl CoA carboxylase 2 variant…

Compound Information

ID 1708
Name ACC
CAS 1-aminocyclopropanecarboxylic acid

Reference

PubMed Abstract RScore(About this table)
18025247 Waring JF, Yang Y, Healan-Greenberg CH, Adler AL, Dickinson R, McNally T, Wang X, Weitzberg M, Xu X, Lisowski A, Warder SE, Gu YG, Zinker BA, Blomme EA, Camp HS: Gene expression analysis in rats treated with experimental acetyl-coenzyme A carboxylase inhibitors suggests interactions with the peroxisome proliferator-activated receptor alpha pathway. J Pharmacol Exp Ther. 2008 Feb;324(2):507-16. Epub 2007 Nov 19.
Acetyl CoA carboxylase (ACC) 2, which catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA, has been identified as a potential target for type 2 diabetes and obesity. Small-molecule inhibitors of ACC2 would be expected to reduce de novo lipid synthesis and increase lipid oxidation. Treatment of ob/ob mice with compound A-908292 (S) ({(S)-3-[2-(4-isopropoxy-phenoxy)-thiazol-5-yl]-1-methyl-prop-2-ynyl}-carb amic acid methyl ester), a small-molecule inhibitor with an IC (50) of 23 nM against ACC2, resulted in a reduction of serum glucose and triglyceride levels. However, compound A-875400 (R) ({(R)-3-[2-(4-isopropoxy-phenoxy)-thiazol-5-yl]-1-methyl-prop-2-ynyl}-carb amic acid methyl ester), an inactive enantiomer of A-908292 (S) with approximately 50-fold less activity against ACC2, also caused a similar reduction in glucose and triglycerides, suggesting that the glucose-lowering effects in ob/ob mice may be mediated by other metabolic pathways independent of ACC2 inhibition. To characterize the pharmacological activity of these experimental compounds at a transcriptional level, rats were orally dosed for 3 days with either A-908292 (S) or A-875400 (R), and gene expression analysis was performed. Gene expression analysis of livers showed that treatment with A-908292 (S) or A-875400 (R) resulted in gene expression profiles highly similar to known peroxisome proliferator-activated receptor (PPAR)-alpha activators. The results suggest that, in vivo, both A-908292 (S) and A-875400 (R) stimulated the PPAR-alpha-dependent signaling pathway. These results were further supported by both an in vitro genomic evaluation using rat hepatocytes and immunohistochemical evaluation using 70-kDa peroxisomal membrane protein. Overall, the gene expression analysis suggests a plausible mechanism for the similar pharmacological findings with active and inactive enantiomers of an ACC2 inhibitor.
5(0,0,0,5)