12873137 |
Wang SC, Person MD, Johnson WH Jr, Whitman CP: Reactions of trans-3-chloroacrylic acid dehalogenase with acetylene substrates: consequences of and evidence for a hydration reaction. Biochemistry. 2003 Jul 29;42(29):8762-73. Various soil bacteria use 1,3-dichloropropene, a component of the commercially available fumigants Shell D-D and Telone II, as a sole source of carbon and energy. One enzyme involved in the catabolism of 1,3-dichloropropene is trans-3-chloroacrylic acid dehalogenase (CaaD), which converts the trans-isomers of 3-bromo- and 3-chloroacrylate to malonate semialdehyde. Sequence analysis suggested a relationship between the heterohexameric CaaD and the bacterial isomerase, 4-oxalocrotonate tautomerase (4-OT), thereby distinguishing CaaD from a number of dehalogenases whose mechanisms proceed through an alkyl- or aryl-enzyme intermediate. In this study, the genes for the alpha- and beta-subunits of CaaD have been synthesized using a polymerase chain reaction-based strategy, cloned into separate plasmids, and the proteins expressed and purified as the functional heterohexamer. Subsequently, the product of the reaction was confirmed to be malonate semialdehyde by (1) H and (13) C NMR spectroscopy, and kinetic constants were determined using a UV spectrophotometric assay. In view of the proposed hydrolytic nature of the CaaD-catalyzed reaction, three acetylene compounds were investigated as substrates for the enzyme. One compound, 2-oxo-3-pentynoate, a potent active site-directed irreversible inhibitor of 4-OT, is a substrate for CaaD, and was processed to acetopyruvate with kinetic constants similar to those determined for the trans-isomers of 3-bromo- and 3-chloroacrylate. The remaining two compounds, 3-bromo- and 3-chloropropiolic acid, were transformed into potent irreversible inhibitors of CaaD. The inactivation observed for 3-bromopropiolic acid is due to the covalent modification of Pro-1 of the beta-subunit. The results provide evidence for a hydratase activity and set the stage to use the 3-halopropiolic acids as ligands in inactivated CaaD complexes that can be studied by X-ray crystallography. |
1(0,0,0,1) |