Protein Information

ID 1175
Name protein tyrosine phosphatase
Synonyms DUSP16; DUSP16 protein; Dual specificity phosphatase 16; Dual specificity protein phosphatase 16; MAP kinase phosphatase 7; MAPK phosphatase 7; MKP 7; MKP7…

Compound Information

ID 1689
Name IAA
CAS

Reference

PubMed Abstract RScore(About this table)
15386804 Larsson K, Elding-Larsson H, Cederwall E, Kockum K, Neiderud J, Sjoblad S, Lindberg B, Lernmark B, Cilio C, Ivarsson SA, Lernmark A: Genetic and perinatal factors as risk for childhood type 1 diabetes. Diabetes Metab Res Rev. 2004 Nov-Dec;20(6):429-37.
The mechanisms by which gestational infections, blood incompatibility, birth weight, mother's age and other prenatal or neonatal events increase the risk for type 1 diabetes are not understood. Studies so far have been retrospective, and there is a lack of population-based prospective studies. The possibility of identifying children at type 1 diabetes risk among first-degree relatives has resulted in prospective studies aimed at identifying postnatal events associated with the appearance of autoantibody markers for type 1 diabetes and a possible later onset of diabetes. However, the majority (85%) of new onset type 1 diabetes children do not have a first-degree relative with the disease. Population-based studies are therefore designed to prospectively analyse pregnant mothers and their offspring. One such study is DiPiS (Diabetes Prediction in Skane), which is examining a total of about 10,000 pregnancies expected every year in the Skane (Scania) region of Sweden that has 1.1 million inhabitants. Blood samples from all mothers in this region are obtained during pregnancy and at the time of delivery. Cord blood is analysed for HLA high-risk alleles and for autoantibodies against the 65 kD isoform of glutamic acid decarboxylase (GADA), the protein tyrosine phosphatase-related IA-2 antigen (IA-2A) and insulin (IAA) as a measure of prenatal autoimmune exposure. Identifying high-risk children by genetic, autoimmune and gestational risk factors followed by prospective analyses will make it possible to test the hypothesis that gestational events may trigger beta cell autoimmunity as a prerequisite for childhood type 1 diabetes.
1(0,0,0,1)