Protein Information

ID 24
Name muscles
Synonyms COX 7a M; COX VIIa M; COX7A; COX7A1; COX7A1 protein; COX7AH; COX7AM; Cytochrome c oxidase subunit 7a H…

Compound Information

ID 333
Name chloralose
CAS

Reference

PubMed Abstract RScore(About this table)
11849728 Hellstrom F, Thunberg J, Bergenheim M, Sjolander P, Djupsjobacka M, Johansson H: Increased intra-articular concentration of bradykinin in the temporomandibular joint changes the sensitivity of muscle spindles in dorsal neck muscles in the cat. Neurosci Res. 2002 Feb;42(2):91-9.
The aim of the present study was to investigate to what extent activation of bradykinin-sensitive nerve endings of the temporomandibular joint (TMJ) might induce changes in the muscle spindles output from neck muscles through reflex effects on cervical fusimotor neurones. To this end, 26 muscle spindle afferents (MSAs) emanating from the trapezius and splenius muscles of the anaesthetised cat (alpha-chloralose, initial dosage 60 mg/kg) were recorded during injection of Bradykinin (BK) (12.5-50 microg/ml) in the ipsilateral TMJ. Fifteen (58%) MSAs exhibited statistically significant fusimotor effects to injection of BK into the TMJ. Of the 15, ten MSAs showed a response related to activation of static fusimotor neurones, three MSAs showed a response related to an activation of both static and dynamic fusimotor neurones and two MSAs showed a inhibition of both static and dynamic fusimotor neurones. The control experiments suggests that the effects observed were due to activation of BK sensitive nerve endings in the TMJ. It seems possible that the reflex connections between TMJ nociceptors and the fusimotor-muscle spindle system of dorsal neck muscles might be involved in the pathophysiological mechanisms responsible for the sensory-motor disturbances in the neck region often found on patients with temporomandibular disorders.
9(0,0,1,4)