Protein Information

ID 3406
Name ERF1
Synonyms C11 protein; RF1; ERF1; Cl1 protein; D5S1995; ERF; ETF 1; ETF1…

Compound Information

ID 1723
Name jasmonic acid
CAS

Reference

PubMed Abstract RScore(About this table)
18567832 Asamizu E, Shimoda Y, Kouchi H, Tabata S, Sato S: A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant Physiol. 2008 Aug;147(4):2030-40. Epub 2008 Jun 20.
We have used reverse genetics to identify genes involved in legume-rhizobium symbiosis in Lotus japonicus. We obtained the sequences of 20 putative transcription factors from previously reported large-scale transcriptome data. The transcription factors were classified according to their DNA binding domains and patterns of expression during the nodulation process. We identified two homologues of Medicago truncatula MtHAP2-1, which encodes a CCAAT-binding protein and has been shown to play a role in nodulation. The functions of the remaining genes in the nodulation process have not been reported. Seven genes were found to encode proteins with AP2-EREBP domains, six of which were similar to proteins that have been implicated in ethylene and/or jasmonic acid signal transduction and defense gene regulation in Arabidopsis (Arabidopsis thaliana). We identified a gene, LjERF1, that is most similar to Arabidopsis ERF1, which is up-regulated by ethylene and jasmonic acid and activates downstream defense genes. LjERF1 showed the same pattern of up-regulation in roots as Arabidopsis ERF1. The nodulation phenotype of roots that overexpressed LjERF1 or inhibited LjERF1 expression using an RNA interference construct indicated that this gene functions as a positive regulator of nodulation. We propose that LjERF1 functions as a key regulator of successful infection of L. japonicus by Mesorhizobium loti.
32(0,1,1,2)