Protein Information

ID 1671
Name orexin
Synonyms HCRT; PPOX; Hcrt; Hypocretin; Hypocretin neuropeptide; OX; Orexin; Orexin precursor…

Compound Information

ID 333
Name chloralose
CAS

Reference

PubMed Abstract RScore(About this table)
12573979 Ciriello J, de Oliveira CV: Cardiac effects of hypocretin-1 in nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol. 2003 Jun;284(6):R1611-20. Epub 2003 Feb 6.
Although recent studies have reported hypocretin 1 (hcrt-1)-like-immunoreactivity (ir) within the region of the nucleus ambiguus (Amb) in the caudal brain stem, the function of hcrt-1 in the Amb on cardiovascular function is not known. Three series of experiments were done in male Wistar rats to investigate the effects of microinjections of hcrt-1 into Amb on heart rate (HR), mean arterial pressure (MAP), and the arterial baroreceptor reflex. In the first series, a detailed mapping of the distribution of hcrt-1- and hcrt-1 receptor (hcrtR-1)-like-ir was obtained of the Amb region. Although hcrt-1-like- and hcrtR-1-like-ir were found throughout the rostrocaudal extent of the Amb and adjacent ventrolateral medullary reticular formation, most of the hcrtR-1-like-ir was observed in the area just ventral to the compact formation of Amb, in the region of the external formation of the nucleus (Ambe). In the second series, the Amb region that contained hcrt-1 and hcrtR-1-ir was explored for sites that elicited changes in HR and MAP in urethane and alpha-chloralose-anesthetized rats. Microinjections of hcrt-1 (0.5-2.5 pmol) into the Ambe elicited a dose-related decrease in HR, with little or no direct change in MAP. The small decreases in MAP were found to be secondary to the HR changes. The largest bradycardia responses were elicited from sites in the Ambe. Administration (iv) of the muscarinic receptor antagonist atropine methyl bromide or ipsilateral vagotomy abolished the HR response, indicating that the HR response was due to activation of vagal cardiomotor neurons. In the final series, microinjections of hcrt-1 into the Ambe significantly potentiated the reflex bradycardia elicited by activation of the baroreflex as a result of the increased MAP after the intravenous injection of phenylephrine. These data suggest that hcrt-1 in the Ambe activates neuronal systems that alter the excitability of central circuits that reflexly control the circulation through the activation of vagal preganglionic cardioinhibitory neurons.
1(0,0,0,1)