11369509 |
Rossi L, Marchese E, Lombardo MF, Rotilio G, Ciriolo MR: Increased susceptibility of copper-deficient neuroblastoma cells to oxidative stress-mediated apoptosis. Free Radic Biol Med. 2001 May 15;30(10):1177-87. Treatment of neuroblastoma cells with the copper chelator triethylene tetramine tetrahydrochloride induced intracellular decrease of copper content paralleled by diminished activity of the enzymes Cu, Zn superoxide dismutase, and cytochrome c oxidase. This effect appears to be specific for copper-enzymes and the treatment affects neither viability nor growth capability of cells. However, molecular markers of apoptosis Bcl-2, p53, and caspase-3 were slightly affected in these cells. When copper-deficient cells were challenged with oxidative stress generated by paraquat or puromycin, they underwent a higher degree of apoptosis with respect to copper-adequate control cells. The mechanism underlying paraquat-triggered apoptosis implies dramatic activation of caspase-3 and induction of the transcription factor p53. These results demonstrate that impairment of copper balance predisposes neuronal cells to apoptosis induced by oxidative stress. Overall findings represent a contribution to the comprehension of the link between copper-imbalance and neurodegeneration, which has recently been repeatedly suggested for the most invalidating pathologies of the central nervous system. |
2(0,0,0,2) |