Protein Information

ID 184
Name epoxide hydrolase
Synonyms EPHX; EPHX 1; EPHX1; EPHX1 protein; EPOX; Epoxide hydratase; Epoxide hydrolase; Epoxide hydrolase 1…

Compound Information

ID 1802
Name piperonyl butoxide
CAS 5-[[2-(2-butoxyethoxy)ethoxy]methyl]-6-propyl-1,3-benzodioxole

Reference

PubMed Abstract RScore(About this table)
3814174 Geneve J, Larrey D, Letteron P, Descatoire V, Tinel M, Amouyal G, Pessayre D: Metabolic activation of the tricyclic antidepressant amineptine--I. Biochem Pharmacol. 1987 Feb 1;36(3):323-9.
Cytochrome P-450-mediated in vitro covalent binding.. Incubation of [14C] amineptine (1 mM) with hamster liver microsomes resulted in the irreversible binding of an amineptine metabolite to microsomal proteins. Covalent binding measured in the presence of various concentrations of amineptine (0.0625-1 mM) followed Michaelis-Menten kinetics. Pretreatment with phenobarbital increased not only the Vmax, but also the Km, for this binding. Covalent binding required NADPH and molecular oxygen and was decreased when the incubation was made in the presence of inhibitors of cytochrome P-450 such as piperonyl butoxide (4 mM), SKF 525-A (4 mM) or carbon monoxide (80:20 CO-O2 atmosphere). In contrast, binding was increased when microsomes from untreated hamsters were incubated in the presence of 0.5 mM 1,1,1-trichloropropene 2,3-oxide, an inhibitor of epoxide hydrolase. Metabolic activation also occurred in kidney microsomes. In vitro covalent binding to kidney microsomal proteins required NADPH and was decreased by piperonyl butoxide (4 mM) but was not increased by pretreatment with phenobarbital. We conclude that amineptine is activated by hamster liver and kidney microsomes into a chemically reactive metabolite that covalently binds to microsomal proteins.
1(0,0,0,1)