Protein Information

ID 1426
Name HDAC
Synonyms HD7; HDAC 7; HDAC7; HD7B; HD9; HDAC; HDAC 9; HDAC7B…

Compound Information

ID 1808
Name sulfoxide
CAS 5-[2-(octylsulfinyl)propyl]-1,3-benzodioxole

Reference

PubMed Abstract RScore(About this table)
19584707 Rahim R, Strobl JS: Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer Drugs. 2009 Sep;20(8):736-45.
The antimalarial drugs chloroquine (CQ) and hydroxychloroquine (HCQ) have potential applications in cancer treatment. The growth of MCF-7 and MDA-MB-231 human breast cancer cells in vitro was inhibited by CQ and HCQ and these cells were more sensitive than nontumorigenic MCF-10A breast epithelial cells. Furthermore, all-trans retinoic acid (ATRA) augmented the anticancer effects of CQ and HCQ as evidenced by significant reductions in Ki67-positive cancer cells and clonogenicity compared with cells treated with CQ or HCQ in the absence of ATRA. As an earlier study suggested that CQ, HCQ, and ATRA are breast cancer cell differentiation agents, these agents were screened in cell-free histone deacetylase (HDAC) and histone acetyltransferase (HAT) assays. ATRA, but not CQ or HCQ, inhibited HDAC activity in HeLa nuclear extracts. Growth inhibitory concentrations of HCQ and ATRA stimulated purified p300/CBP-associated factor, where CBP is the cAMP-response element binding protein, HAT activity. To investigate whether growth inhibitory concentrations of these agents influenced protein acetylation in cells, gel-purified histone H3 and histone H4 were analyzed using mass spectrometry. HCQ alone and HCQ+ATRA treatments altered the acetylation status in the N-terminal lysines of histones H3 and H4 compared with dimethyl sulfoxide (DMSO) controls. The results indicated that HCQ and ATRA regulate protein acetylation events in MCF-7 breast cancer cells, and identify a potential mechanism for their effects on breast cancer cell growth and differentiation.
1(0,0,0,1)