Protein Information

ID 3480
Name methionine sulfoxide reductase B
Synonyms CBS 1; CBS1; CGI 131; MSRB; MSRB 2; MSRB2; Methionine sulfoxide reductase B2; Methionine R sulfoxide reductase B…

Compound Information

ID 1808
Name sulfoxide
CAS 5-[2-(octylsulfinyl)propyl]-1,3-benzodioxole

Reference

PubMed Abstract RScore(About this table)
20006300 Dhandayuthapani S, Jagannath C, Nino C, Saikolappan S, Sasindran SJ: Methionine sulfoxide reductase B (MsrB) of Mycobacterium smegmatis plays a limited role in resisting oxidative stress. Tuberculosis. 2009 Dec;89 Suppl 1:S26-32.
Pathogenic mycobacteria including Mycobacterium tuberculosis resists phagocyte generated reactive oxygen intermediates (ROI) and this constitutes an important virulence mechanism. We have previously reported, using Mycobacterium smegmatis as a model to identify the bacterial components that resist intracellular ROI, that an antioxidant methionine sulfoxide reductase A (MsrA) plays a critical role in this process. In this study, we report the role of methionine sulfoxide reductase B (MsrB) in resistance to ROI by constructing a msrB mutant (MSDeltamsrB) and MsrA/B double mutant (MSDeltamsrA/B) strains of M. smegmatis and testing their survival in unactivated and interferon gamma activated mouse macrophages. WhilemsrB mutant exhibited significantly lower intracellular survival than its wild type counterpart, the survival rate seemed to be much higher than msrA mutant (MSDeltamsrA) strain. Further, the msrB mutant showed no sensitivity to oxidants in vitro. The msrA/B double mutant (MSDeltamsrA/B), on the other hand, exhibited a phenotype similar to that of msrA mutant in terms of both intracellular survival and sensitivity to oxidants. We conclude, therefore, that MsrB of M. smegmatis plays only a limited role in resisting intracellular and in vitro ROI.
2(0,0,0,2)