Protein Information

ID 48
Name complex is
Synonyms 39kD; CI 39kD; Complex I; Complex I 39kD; NADH dehydrogenase (ubiquinone) Fe S protein 2 like; NADH ubiquinone oxidoreductase 39 kDa subunit mitochondrial; NADH ubiquinone oxidoreductase 39 kDa subunit; NDUFA 9…

Compound Information

ID 1808
Name sulfoxide
CAS 5-[2-(octylsulfinyl)propyl]-1,3-benzodioxole

Reference

PubMed Abstract RScore(About this table)
17388462 Danil de Namor AF, Abbas I, Hammud HH: A new calix [4] pyrrole derivative and its anion (fluoride)/cation (mercury and silver) recognition. J Phys Chem B. 2007 Mar 29;111(12):3098-105. Epub 2007 Mar 7.
A new calix [4] pyrrole-based macrocycle, meso-tetramethyl-tetrakis{4-[2-(ethylthio) ethoxy] phenyl}calix [4] pyrrole, 7, has been synthesized and fully characterized. Unlike other calixpyrrole derivatives that show selective interaction with anions, calixpyrrole 7 described in the present work forms stable complexes with both metal cations and anions. The thermodynamics of complexation of this ditopic calixpyrrole derivative with metal cations (Hg2+ and Ag+) and the fluoride anion in nonaqueous solutions have been determined by titration calorimetry, and the host-guest composition has been investigated by using conductance measurements at 298.15 K. 1H NMR studies provide clear evidence about the sites of complexation of 7 with the ionic species, which show that the NH groups are taking part in the complexation of this ligand with the fluoride anion while the sulfur donor atoms are responsible for the interaction with metal cations. Using the present data on 7 and structurally related analogues (1-6), the complexation behavior is discussed comparatively from the thermodynamic point of view. Possessing four sulfur-containing pendent arms, 7 displays an enhanced hosting ability for Hg2+ in acetonitrile. As compared with 1, the calixpyrrole derivative, 7, shows a unique interaction with fluoride among the anions investigated in acetonitrile and dimethyl sulfoxide. As far as the fluoride complex is concerned, the medium effect is assessed in terms of the thermodynamics of the transfer of reactants and product from acetonitrile (reference solvent) to dimethyl sulfoxide.
1(0,0,0,1)