Protein Information

ID 95
Name cholinesterase
Synonyms Acylcholine acylhydrolase; BCHE; BCHE protein; Butyrylcholine esterase; Butyrylcholinesterase; CHE1; Choline esterase II; Cholinesterase…

Compound Information

ID 202
Name chlorpyrifos
CAS

Reference

PubMed Abstract RScore(About this table)
11106864 Moser VC: Dose-response and time-course of neurobehavioral changes following oral chlorpyrifos in rats of different ages. Neurotoxicol Teratol. 2000 Sep-Oct;22(5):713-23.
Young rats have been shown in several laboratories to be more sensitive to the neurotoxic effects of acute exposure to chlorpyrifos. To examine the neurobehavioral effects of chlorpyrifos as a function of age and dose, we conducted dose-response and time-course assessments in rats of three different ages (postnatal day, or PND, 17, 27, and adults). Doses were selected to span the effective dose range in each age group: PND17 - 4, 10, 20 mg/kg; PND27 - 10, 25, 50 mg/kg; adult - 10, 50, 100 mg/kg. Rats were tested at the time of peak effect on the day of dosing, and again at 1 and 3 days, and at 1 and 2 weeks after a single oral dose. There were age- and sex-related differences in the recovery of these behavioral effects; the adult males recovered from the behavioral effects more quickly than the other age groups, and the adult females showed the slowest recovery (up to at least 3 days). Although these doses had been shown previously to produce a similar degree of cholinesterase inhibition, the neurobehavioral alterations fell into the following three patterns of effect as a function of age. (1) Some endpoints (e.g., gait abnormalities, tremor) showed a dose-response curve that was shifted to the right in the older animals. Calculated ED50 values indicated that the PND17 rats were three- to five-fold more sensitive than the adults. (2) Some measures showed less effect in the youngest rats; for example, maximal motor activity decreases were half as great as with adults. (3) A few effects that were typically observed in adults, e.g., salivation, were not seen at all in the PND17 rats. Thus, differential responses on these neurobehavioral endpoints were observed as a function of age. These data suggest that, for some endpoints, young rats are more sensitive to a range of chlorpyrifos doses; however, the magnitude of age-related differences depends on the specific endpoint and time of assessment, as well as age and sex of the test subject.
1(0,0,0,1)