11952338 |
Sogorb MA, Carrera V, Benabent M, Vilanova E: Rabbit serum albumin hydrolyzes the carbamate carbaryl. . Chem Res Toxicol. 2002 Apr;15(4):520-6. One of the main detoxification processes of the carbamate insecticides is the hydrolysis of the carbamic ester bond. Carboxylesterases seem to play important roles in the metabolization of carbamates. This study performs a biochemical characterization of the capabilities of rabbit serum albumin (RSA) to hydrolyze the carbamate carbaryl. Rabbit serum albumin was able to hydrolyze carbaryl with a K (cat) of 7.1 x 10 (-5) s (-1). The K (m) for this hydrolysis reaction was 240 microM. Human, chicken, and bovine serum albumins were also able to hydrolyze carbaryl. The divalent cation Cu (2+) at 1 mM concentration inhibited around 50% of the hydrolysis of carbaryl by RSA. Other mono- and divalent cations at 1 mM concentration and 5 mM EDTA exerted no significant effects on the hydrolysis of carbaryl by RSA. The inhibition of the carbaryl hydrolysis by sulfydril blocking agents suggests that a cysteine residue plays an important role in the active center of the catalytic activity. Both caprylic and palmitic acids were noncompetitive inhibitors of the carbaryl hydrolysis by RSA. The carboxyl ester p-nitrophenyl butyrate is a substrate of RSA and competitively inhibited the hydrolysis of carbaryl by this protein, suggesting that the hydrolysis of carbaryl and the hydrolysis of carboxyl esters occur in the same catalytic site and through a similar mechanism. This mechanism might be based on the carbamylation of a tyrosine residue of the RSA. Serum albumin is a protein universally present in nontarget species of insecticides; therefore, the capability of this protein to hydrolyze other carbamates must be studied because it might have important toxicological and ecotoxicological implications. |
6(0,0,1,1) |