20123115 |
Pushpanjali P, Ramaiah KV: PKC activation contributes to caspase-mediated eIF2alpha phosphorylation and cell death. Biochim Biophys Acta. 2010 May;1800(5):518-525. Epub 2010 Feb 1. BACK GROUND: Stress-induced phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha), involved in translation, promotes cell suicide or survival. Since multiple signaling pathways are implicated in cell death, the present study has analyzed the importance of PKC activation in the stress-induced eIF2alpha phosphorylation, caspase activation and cell death in the ovarian cells of Spodoptera frugiperda (Sf9) and in their extracts. METHODS: Cell death is analyzed by flow cytometry. Caspase activation is measured by Ac-DEVD-AFC hydrolysis and also by the cleavage of purified recombinant PERK, an endoplasmic reticulum-resident eIF2alpha kinase. Status of eIF2alpha phosphorylation and cytochrome c levels are analyzed by western blots. RESULTS: PMA, an activator of PKC, does not promote cell death or affect eIF2alpha phosphorylation. However, PMA enhances late stages of UV-irradiation or cycloheximide-induced caspase activation, eIF2alpha phosphorylation and apoptosis in Sf9 cells. PMA also enhances cytochrome c-induced caspase activation and eIF2alpha phosphorylation in cell extracts. These changes are mitigated more efficiently by caspase inhibitor, z-VAD-fmk, than by calphostin, an inhibitor of PKC. In contrast, tunicamycin-induced eIF2alpha phosphorylation that does not lead to caspase activation or cell death is unaffected by PMA, z-VAD-fmk or by calphostin. CONCLUSIONS: While caspase activation is a cause and consequence of eIF2alpha phosphorylation, PKC activation that follows caspase activation further enhances caspase activation, eIF2alpha phosphorylation, and cell death in Sf9 cells. GENERAL SIGNIFICANCE: Caspases can activate multiple signaling pathways to enhance cell death. |
1(0,0,0,1) |