19112105 |
Kadohara K, Nagumo M, Asami S, Tsukumo Y, Sugimoto H, Igarashi M, Nagai K, Kataoka T: Caspase-8 mediates mitochondrial release of pro-apoptotic proteins in a manner independent of its proteolytic activity in apoptosis induced by the protein synthesis inhibitor acetoxycycloheximide in human leukemia Jurkat cells. J Biol Chem. 2009 Feb 27;284(9):5478-87. Epub 2008 Dec 26. The cysteine protease caspase-8 plays an essential role in apoptosis induced by death receptors. The protein synthesis inhibitor acetoxycycloheximide (Ac-CHX) has been previously shown to induce rapid apoptosis mediated by the release of cytochrome c in human leukemia Jurkat cells. In this study, the novel molecular mechanism that links caspase-8 to the mitochondrial release of pro-apoptotic proteins has been identified. Jurkat cells deficient in caspase-8 were more resistant to Ac-CHX than wild-type Jurkat cells and manifested decreased apoptosis induction and caspase activation as well as inefficient release of cytochrome c, Smac/DIABLO, and AIF into the cytosol. In contrast to Fas ligand stimulation, the general caspase inhibitor barely prevented the mitochondrial release of these pro-apoptotic proteins in Ac-CHX-treated cells, suggesting that caspase-8 activity is dispensable for triggering the mitochondrial pathway in Ac-CHX-induced apoptosis. Consistent with this notion, caspase-8-deficient Jurkat cells reconstituted with catalytically inactive caspase-8 became sensitive to Ac-CHX and exhibited apoptosis, caspase activation, the liberation of pro-apoptotic proteins into the cytosol, and Bak conformational change as efficiently as wild-type Jurkat cells. Unlike caspase-3, -6, -7, and -9, a small but significant portion of caspase-8 was found to localize in mitochondria before and after exposure to Ac-CHX. These results clearly demonstrate that caspase-8 is able to mediate the mitochondrial release of pro-apoptotic proteins in a manner independent of its proteolytic activity in Ac-CHX-induced apoptosis. |
3(0,0,0,3) |