Protein Information

ID 120
Name protein kinase A (protein family or complex)
Synonyms Protein kinase A; cAMP dependent protein kinase; cAMP dependent protein kinases

Compound Information

ID 456
Name cycloheximide
CAS

Reference

PubMed Abstract RScore(About this table)
19540219 Fu Z, Liu D: Long-term exposure to genistein improves insulin secretory function of pancreatic beta-cells. Eur J Pharmacol. 2009 Aug 15;616(1-3):321-7. Epub 2009 Jun 18.
We recently found that genistein, a plant-derived natural compound, is a novel cAMP signaling agonist in pancreatic beta-cells. In the present study, we further show that exposure of clonal insulin secreting (INS-1E) cells to genistein for 48 h enhanced glucose-stimulated insulin secretion (GSIS), whereas insulin content was not altered, suggesting that genistein-enhanced GSIS is not due to a modulation of insulin synthesis. This genistein effect is protein tyrosine kinase- and K (ATP) channel-independent. In addition, genistein had no effect on glucose transporter-2 expression or cellular ATP production, but similarly augmented pyruvate-stimulated insulin secretion in INS-1E cells, indicating that the improvement of insulin secretory function by long-term genistein exposure is not related to an alternation in glucose uptake or the glycolytic pathway. The enhanced insulin secretion by genistein was associated with elevated intracellular Ca (2+) concentration and dependent on protein kinase A and new protein synthesis as this effect was completely blocked by N-[2-(p-Bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide or cycloheximide. Similarly, 48 h of genistein exposure also enhanced GSIS in freshly isolated mouse and human pancreatic islets, suggesting a non-species-specific and biologically relevant effect. These findings provide evidence that genistein may be a novel bioactive compound that has an anti-diabetic effect by improving insulin secretion from pancreatic beta-cells.
31(0,1,1,1)