Protein Information

ID 36
Name glutathione S transferase
Synonyms GST class alpha 2; Gst2; GST class alpha; GST class alpha member 2; GST gamma; GSTA 2; GSTA2; GSTA2 2…

Compound Information

ID 1084
Name paraquat
CAS 1,1′-dimethyl-4,4′-bipyridinium

Reference

PubMed Abstract RScore(About this table)
16195250 Gong H, Singh SV, Singh SP, Mu Y, Lee JH, Saini SP, Toma D, Ren S, Kagan VE, Day BW, Zimniak P, Xie W: Orphan nuclear receptor pregnane X receptor sensitizes oxidative stress responses in transgenic mice and cancerous cells. Mol Endocrinol. 2006 Feb;20(2):279-90. Epub 2005 Sep 29.
Efficient handling of oxidative stress is critical for the survival of organisms. The orphan nuclear receptor pregnane X receptor (PXR) is important in xenobiotic detoxification through its regulation of phase I and phase II drug-metabolizing/detoxifying enzymes and transporters. In this study we unexpectedly found that the expression of an activated human PXR in transgenic female mice resulted in a heightened sensitivity to paraquat, an oxidative xenobiotic toxicant. Heightened paraquat sensitivity was also seen in wild-type mice treated with the mouse PXR agonist pregnenolone-16alpha-carbonitrile. The PXR-induced paraquat sensitivity was associated with decreased activities of superoxide dismutase and catalase, enzymes that scavenge superoxide and hydrogen peroxide, respectively. Paradoxically, the general expression and activity of glutathione S-transferases, a family of phase II enzymes that detoxify electrophilic and cytotoxic substrates, was also induced in the transgenic mice. PXR regulates glutathione S-transferase expression in an isozyme-, tissue-, and sex-specific manner, and this regulation is independent of the nuclear factor-erythroid 2 p45-related factor 2/Kelch-like Ech-associated protein 1 pathway. In cell cultures, expression of activated human PXR sensitizes the cancerous colon and liver cells to the cytotoxic effect of paraquat, which is associated with an increased production of the reactive oxygen species. The current study reveals a novel function of PXR in the mammalian oxidative stress response, and this regulatory pathway may be implicated in carcinogenesis by sensitizing normal and cancerous tissues to oxidative cellular damage.
2(0,0,0,2)