Protein Information

ID 595
Name glyceraldehyde 3 phosphate dehydrogenase
Synonyms CDABP0047; G3PD; GAPD; GAPD protein; GAPDH; Glyceraldehyde 3 phosphate dehydrogenase; GAPD proteins; Glyceraldehyde 3 phosphate dehydrogenases

Compound Information

ID 1084
Name paraquat
CAS 1,1′-dimethyl-4,4′-bipyridinium

Reference

PubMed Abstract RScore(About this table)
10585871 Mitsumoto A, Kim KR, Oshima G, Kunimoto M, Okawa K, Iwamatsu A, Nakagawa Y: Glyoxalase I is a novel nitric-oxide-responsive protein. Biochem J. 1999 Dec 15;344 Pt 3:837-44.
To clarify the molecular mechanisms of nitric oxide (NO) signalling, we examined the NO-responsive proteins in cultured human endothelial cells by two-dimensional (2D) PAGE. Levels of two proteins [NO-responsive proteins (NORPs)] with different pI values responded to NO donors. One NORP (pI 5.2) appeared in response to NO, whereas another (pI 5.0) disappeared. These proteins were identified as a native form and a modified form of human glyoxalase I (Glox I; EC 4. 4.1.5) by peptide mapping, microsequencing and correlation between the activity and the isoelectric shift. Glox I lost activity in response to NO, and all NO donors tested inhibited its activity in a dose-dependent manner. Activity and normal electrophoretic mobility were restored by dithiothreitol and by the removal of sources of NO from the culture medium. Glox I was selectively inactivated by NO; compounds that induce oxidative stress (H (2) O (2), paraquat and arsenite) failed to inhibit this enzyme. Our results suggest that NO oxidatively modifies Glox I and reversibly inhibits the enzyme's activity. The inactivation of Glox I by NO was more effective than that of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), another NO-sensitive enzyme. Thus Glox I seems to be a novel NO-responsive protein that is more sensitive to NO than G3PDH.
0(0,0,0,0)