Protein Information

ID 163
Name HC5
Synonyms CYCSP 1; CYCSP1; HC5; HCP36

Compound Information

ID 228
Name parathion
CAS

Reference

PubMed Abstract RScore(About this table)
16986804 Frampton GK, Jansch S, Scott-Fordsmand JJ, Rombke J, Van den Brink PJ: Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem. 2006 Sep;25(9):2480-9.
Species sensitivity distributions (SSD) and 5% hazardous concentrations (HC5) are distribution-based approaches for assessing environmental risks of pollutants. These methods have potential for application in pesticide risk assessments, but their applicability for assessing pesticide risks to soil invertebrate communities has not been evaluated. Using data obtained in a systematic review, the present study investigates the relevance of SSD and HC5 for predicting pesticide risks to soil invertebrates. Altogether, 1950 laboratory toxicity data were obtained, representing 250 pesticides and 67 invertebrate taxa. The majority (96%) of pesticides have toxicity data for fewer than five species. Based on a minimum of five species, the best available endpoint data (acute mortality median lethal concentration) enabled SSD and HC5 to be calculated for 11 pesticides (atrazine, carbendazim, chlorpyrifos, copper compounds, diazinon, dimethoate, gamma-hexachlorocyclohexane, lambda-cyhalothrin, parathion, pentachlorophenol, and propoxur). Arthropods and oligochaetes exhibit pronounced differences in their sensitivity to most of these pesticides. The standard test earthworm species, Eisenia fetida sensu lato, is the species that is least sensitive to insecticides based on acute mortality, whereas the standard Collembola test species, Folsomia candida, is among the most sensitive species for a broad range of toxic modes of action (biocide, fungicide, herbicide, and insecticide). These findings suggest that soil arthropods should be tested routinely in regulatory risk assessments. In addition, the data indicate that the uncertainty factor for earthworm acute mortality tests (i.e., 10) does not fully cover the range of earthworm species sensitivities and that acute mortality tests would not provide the most sensitive risk estimate for earthworms in the majority (95%) of cases.
8(0,0,1,3)