19398231 |
Kim SJ, Lee JW, Jung YS, Kwon do Y, Park HK, Ryu CS, Kim SK, Oh GT, Kim YC: Ethanol-induced liver injury and changes in sulfur amino acid metabolomics in glutathione peroxidase and catalase double knockout mice. J Hepatol. 2009 Jun;50(6):1184-91. Epub 2009 Apr 5. BACKGROUND/AIMS: Oxidative stress via generation of reactive oxygen species is suggested to be the major mechanism of alcohol-induced liver injury. We investigated the effects of glutathione peroxidase-1 and catalase double deficiency (Gpx-1 (-/-)/Cat (-/-)) on liver injury and changes in the sulfur amino acid metabolism induced by binge ethanol administration. METHODS: Ethanol (5 g/kg) was administered orally to the wild-type and the Gpx-1 (-/-)/Cat (-/-) mice every 12 h for a total of three doses. Mice were sacrificed 6 h after the final dose. RESULTS: The Gpx-1/Cat deficiency alone increased malondialdehyde levels in liver significantly. Hepatic methionine adenosyltransferase (MAT) activity and S-adenosylmethionine levels were decreased, however, glutathione contents were not changed. Ethanol administration to the Gpx-1 (-/-)/Cat (-/-) mice increased the elevation of serum alanine aminotransferase activity, plasma homocysteine levels, hepatic fat accumulation and lipid peroxidation compared with the wild-type animals challenged with ethanol. Also the reduction of MAT activity and S-adenosylmethionine levels was enhanced, but MATI/III expression was increased significantly. CONCLUSIONS: The results indicate that Gpx-1 and Cat have critical roles in the protection of liver against binge ethanol exposure. Augmentation of ethanol-induced oxidative stress may be responsible for the impairment of the transsulfuration reactions and the aggravation of acute liver injury in the Gpx-1 (-/-)/Cat (-/-) mice. |
37(0,1,2,2) |