Protein Information

ID 767
Name apoproteins
Synonyms AD2; APOE; Apo E; Apolipoprotein E; Apolipoprotein E precursor; apoprotein; Apo Es; Apolipoprotein Es…

Compound Information

ID 309
Name sulfur
CAS sulfur

Reference

PubMed Abstract RScore(About this table)
19855833 Kuchenreuther JM, Stapleton JA, Swartz JR: Tyrosine, cysteine, and S-adenosyl methionine stimulate in vitro [FeFe] hydrogenase activation. PLoS One. 2009 Oct 26;4(10):e7565.
BACKGROUND: [FeFe] hydrogenases are metalloenzymes involved in the anaerobic metabolism of H (2). These proteins are distinguished by an active site cofactor known as the H-cluster. This unique [6Fe-6S] complex contains multiple non-protein moieties and requires several maturation enzymes for its assembly. The pathways and biochemical precursors for H-cluster biosynthesis have yet to be elucidated. PRINCIPAL FINDINGS: We report an in vitro maturation system in which, for the first time, chemical additives enhance [FeFe] hydrogenase activation, thus signifying in situ H-cluster biosynthesis. The maturation system is comprised of purified hydrogenase apoprotein; a dialyzed Escherichia coli cell lysate containing heterologous HydE, HydF, and HydG maturases; and exogenous small molecules. Following anaerobic incubation of the Chlamydomonas reinhardtii HydA1 apohydrogenase with S-adenosyl methionine (SAM), cysteine, tyrosine, iron, sulfide, and the non-purified maturases, hydrogenase activity increased 5-fold relative to incubations without the exogenous substrates. No conditions were identified in which addition of guanosine triphosphate (GTP) improved hydrogenase maturation. SIGNIFICANCE: The in vitro system allows for direct investigation of [FeFe] hydrogenase activation. This work also provides a foundation for studying the biosynthetic mechanisms of H-cluster biosynthesis using solely purified enzymes and chemical additives.
1(0,0,0,1)