Protein Information

ID 40
Name sodium channel (protein family or complex)
Synonyms Sodium channel

Compound Information

ID 1331
Name pyrethrins
CAS pyrethrins

Reference

PubMed Abstract RScore(About this table)
12383951 Kamei J, Iguchi E, Sasaki M, Zushida K, Morita K, Tanaka S: Modification of the fenvalerate-induced nociceptive response in mice by diabetes. Brain Res. 2002 Sep 6;948(1-2):17-23.
We examined the effect of diabetes on the fenvalerate-induced nociceptive response in mice. The intrathecal (i.t.) or intraplantar (i.pl.) injection of fenvalerate, a sodium channel activator, induced a characteristic behavioral syndrome mainly consisting of reciprocal hind limb scratching directed towards caudal parts of the body and biting or licking of the hind legs in both non-diabetic and diabetic mice. However, the intensity of such fenvalerate-induced nociceptive responses was significantly greater in diabetic mice than in non-diabetic mice. Calphostin C (3 pmol, i.t.), a selective protein kinase C inhibitor, significantly inhibited intrathecal fenvalerate-induced nociceptive behavior with a rightward shift of the dose-response curve for fenvalerate-induced nociceptive behavior to the level those observed in non-diabetic mice. On the other hand, when non-diabetic mice were pretreated with phorbol-12, 13-dibutyrate (50 pmol, i.t.), the dose-response curve for intrathecal fenvalerate-induced nociceptive behavior was shifted leftward to the level those observed in diabetic mice. These results suggest that the sensitization of sodium channels, probably tetrodotoxin-resistant (TTX-R) sodium channels, by the long-term activation of protein kinase C may play an important role in the enhancement of the duration of fenvalerate-induced nociceptive behavior in diabetic mice.
1(0,0,0,1)