Protein Information

ID 1484
Name CBF1
Synonyms C promoter binding factor 1; CBF 1; CBF1; H 2K binding factor 2; IGKJRB; IGKJRB 1; IGKJRB1; Immunoglobulin kappa J region recombination signal binding protien 1…

Compound Information

ID 1713
Name gibberellins
CAS gibberellins

Reference

PubMed Abstract RScore(About this table)
12114563 Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT: Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 2002 Jul;129(3):1086-94.
In an attempt to improve stress tolerance of tomato (Lycopersicon esculentum) plants, an expression vector containing an Arabidopsis C-repeat/dehydration responsive element binding factor 1 (CBF1) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into tomato plants. Transgenic expression of CBF1 was proved by northern- and western-blot analyses. The degree of chilling tolerance of transgenic T (1) and T (2) plants was found to be significantly greater than that of wild-type tomato plants as measured by survival rate, chlorophyll fluorescence value, and radical elongation. The transgenic tomato plants exhibited patterns of growth retardation; however, they resumed normal growth after GA (3) (gibberellic acid) treatment. More importantly, GA (3)-treated transgenic plants still exhibited a greater degree of chilling tolerance compared with wild-type plants. Subtractive hybridization was performed to isolate the responsive genes of heterologous Arabidopsis CBF1 in transgenic tomato plants. CATALASE1 (CAT1) was obtained and showed activation in transgenic tomato plants. The CAT1 gene and catalase activity were also highly induced in the transgenic tomato plants. The level of H (2) O (2) in the transgenic plants was lower than that in the wild-type plants under either normal or cold conditions. The transgenic plants also exhibited considerable tolerance against oxidative damage induced by methyl viologen. Results from the current study suggest that heterologous CBF1 expression in transgenic tomato plants may induce several oxidative-stress responsive genes to protect from chilling stress.
4(0,0,0,4)