16002064 |
Takeda H, Tsuji M, Ikoshi H, Yamada T, Masuya J, Iimori M, Matsumiya T: Effects of a 5-HT7 receptor antagonist DR4004 on the exploratory behavior in a novel environment and on brain monoamine dynamics in mice. Eur J Pharmacol. 2005 Jul 25;518(1):30-9. The present study examined whether serotonin (5-hydroxytryptamine; 5-HT) 7 receptors play a role in the modulation of emotionality in mice using the selective 5-HT7 receptor antagonist 2a-[4-(4-phenyl-1,2,3,6-tetrahydropyridyl) butyl]-2a,3,4,5-tetrahydrobenzo (c,d) indol-2-(1H)-one (DR4004). The emotionality of mice was evaluated in terms of exploratory activity in the hole-board test. The mice treated with DR4004 (2.5-10 mg/kg, i.p.) displayed a dose-dependent decrease in locomotor activity by moving less distance in the hole-board, and statistically significant decreases were observed at 5 and 10 mg/kg. On the other hand, DR4004 (10 mg/kg, i.p.) did not affect spontaneous motor activity. In a neurochemical study, decreases in amygdaloid dopamine and 5-HT turnover were observed in mice in which locomotor activity in the hole-board test was attenuated following the administration of DR4004 (10 mg/kg, i.p.). Also, a simple linear regression analysis revealed that locomotor activity on the hole-board was significantly correlated with dopamine and 5-HT turnover in amygdala. Furthermore, co-injection of the selective dopamine reuptake inhibitor 1-(2-[bis (4-fluorophenyl) methoxy] ethyl)-4-(3-phenylpropyl) piperazine (GBR12909; 1.25-5 mg/kg, i.p.) or the selective 5-HT reuptake inhibitor fluvoxamine (20 mg/kg, i.p.) significantly reversed the DR4004 (10 mg/kg, i.p.)-induced decrease in locomotor activity in the hole-board test. These findings constitute the behavioral evidence that 5-HT7 receptors may play a role in the modulation of emotionality. Furthermore, it is also suggested that amygdaloid dopamine and 5-HT neuronal systems may be involved in this modulation. |
3(0,0,0,3) |